đ Building a FastAPI Backend for Your AI Application with ChromaDB, FAISS, and LangChain
đ Introduction
FastAPI is one of the most modern and high-performance Python web frameworks, ideal for building RESTful APIs for AI and data-intensive applications. When combined with ChromaDB, FAISS, LangChain, and LLMs like DeepSeek or OpenAI, FastAPI can serve as a scalable, secure, and flexible backend powering multiple AI frontends â including Streamlit, React, mobile apps, or bots.
This guide walks you through setting up a FastAPI backend that exposes endpoints for:
Chat with Retrieval-Augmented Generation (RAG)
File/document ingestion
Vector search using ChromaDB + FAISS
User session and chat history
Multimodal support: PDF, audio, images
Optional: JWT-based user authentication
â Table of Contents
Why Use FastAPI for AI Backends?
Project Structure
Setup and Installation
Defining the Vector Store Logic
Creating Endpoints with FastAPI
Uploading and Parsing Documents
Querying with LLM + LangChain
Adding Multimodal Inputs
Optional: Auth + Session History
Deploying with Uvicorn, Docker, or Cloud
Connecting Streamlit Frontend to FastAPI
Use Cases and Extensions
Final Thoughts + GitHub Template
1. đ§ Why Use FastAPI for AI?
High Performance (based on Starlette + Pydantic)
Built-in OpenAPI and Swagger UI
Asynchronous (async/await) for scalability
Auto-generated docs
Easily integrates with LLMs, LangChain, FAISS, ChromaDB
Works well with CORS, OAuth2, JWT
2. đ Project Structure
css ai-backend/ âââ app/ â   âââ main.pyâ   âââ models/ â   â   âââ faiss_store.pyâ   â   âââ chroma_store.pyâ   â   âââ embeddings.pyâ   â   âââ langchain_agent.pyâ   âââ routes/ â   â   âââ ingest.pyâ   â   âââ query.pyâ   â   âââ auth.pyâ   âââ utils/ â   â   âââ pdf.pyâ   â   âââ audio.pyâââ requirements.txtâââ Dockerfile âââ README.md
3. âď¸ Setup and Installation
Create a virtual environment:
bash python -m venv venvsource venv/bin/activate
Install dependencies:
bash pip install fastapi uvicorn langchain chromadb faiss-cpu sentence-transformers pydantic pypdf python-multipart
Optional for Whisper/Image support:
bash pip install whisper transformers pillow
4. đ§Ź Vector Store Logic (ChromaDB + FAISS)
models/chroma_store.py
python import chromadbfrom sentence_transformers import SentenceTransformer client = chromadb.Client() collection = client.create_collection(name="docs") embedder = SentenceTransformer("all-MiniLM-L6-v2")def add_to_chroma(text, doc_id, metadata=None):     vec = embedder.encode([text])     collection.add(         documents=[text],         ids=[doc_id],         embeddings=vec,         metadatas=[metadata or {}]     )def query_chroma(query):    return collection.query(query_texts=[query], n_results=3)
models/faiss_store.py
python import faissimport numpy as np dimension = 384index = faiss.IndexFlatL2(dimension) memory = []def add_to_faiss(text, embedder):     vec = embedder.encode([text])     memory.append(vec[0])     index.add(np.array(memory).astype('float32'))def query_faiss(text, embedder):     vec = embedder.encode([text])     distances, indices = index.search(np.array(vec).astype('float32'), k=3)    return indices
5. đ§ž Creating FastAPI Endpoints
app/main.py
python from fastapi import FastAPIfrom app.routes import ingest, query app = FastAPI(title="AI API Backend") app.include_router(ingest.router, prefix="/ingest") app.include_router(query.router, prefix="/query")@app.get("/")def read_root():    return {"message": "Welcome to the AI Backend"}
6. đ Document Upload + Parsing
routes/ingest.py
python from fastapi import APIRouter, UploadFile, Filefrom app.models.chroma_store import add_to_chromafrom PyPDF2 import PdfReader router = APIRouter()@router.post("/upload")async def upload_file(file: UploadFile = File(...)):     contents = await file.read()     reader = PdfReader(file.file)     text = "\n".join([page.extract_text() for page in reader.pages])     add_to_chroma(text, doc_id=file.filename)    return {"status": "success", "filename": file.filename}
7. đ§ LLM Query Endpoint
routes/query.py
python from fastapi import APIRouterfrom pydantic import BaseModelfrom app.models.chroma_store import query_chromafrom langchain.llms import OpenAI router = APIRouter()class QueryRequest(BaseModel):     query: strllm = OpenAI(model_name="gpt-3.5-turbo")@router.post("/ask")def ask_q(req: QueryRequest):     docs = query_chroma(req.query)     context = "\n".join(docs["documents"][0])     prompt = f"Context:\n{context}\n\nQuestion: {req.query}"     response = llm(prompt)    return {"answer": response}
8. đźď¸ Multimodal Upload (Optional)
python @router.post("/audio")async def transcribe_audio(file: UploadFile = File(...)):    import whisper     model = whisper.load_model("base")     result = model.transcribe(file.file.name)    return {"transcription": result["text"]}
9. đ Optional Auth and History
Use fastapi-users
or JWT tokens for user authentication and session tracking. Save chat history in SQLite or Redis for scalable, stateless deployments.
10. đ Deployment
Run locally:
bash uvicorn app.main:app --reload --port 8000
Create a Dockerfile
:
dockerfile FROM python:3.10 WORKDIR /app COPY . . RUN pip install -r requirements.txt CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8000"]
Deploy on:
HuggingFace Spaces
Fly.io
Render
Railway
AWS/GCP/Azure with API Gateway + Lambda
11. đ Connect to Streamlit Frontend
In streamlit/app.py
:
python import requests query = st.text_input("Ask your question")if st.button("Submit"):     res = requests.post("http://localhost:8000/query/ask", json={"query": query})     st.write(res.json()["answer"])
Upload PDF:
python file = st.file_uploader("Upload PDF")if file:     res = requests.post("http://localhost:8000/ingest/upload", files={"file": file})     st.success(f"Uploaded {file.name}")
12. đź Use Cases
Use Case | Description |
---|---|
Chatbot API | Power any frontend with unified AI logic |
Education | Students upload notes, query content |
Healthcare | Doctors upload clinical docs + voice notes |
Enterprise RAG | Vector search over manuals, emails |
Multilingual AI | Extend API to support different locales |
13. â Final Thoughts
A FastAPI backend gives your AI application:
Scalability: Serve multiple frontends
Security: Add JWT, rate limiting
Maintainability: Separation of concerns
Extensibility: Add PDF, image, audio support
Speed: Async + optimized I/O
When paired with Streamlit, LangChain, and DeepSeek, you get a production-grade RAG architecture ready to scale.
đ§Š Bonus: Sample GitHub Repo Structure
css ai-rag-fastapi/ âââ app/ â   âââ main.pyâ   âââ routes/ â   âââ models/ â   âââ utils/ âââ streamlit_ui/ â   âââ app.pyâââ requirements.txtâââ Dockerfile âââ README.md
Would you like a full repo template with Docker + Streamlit + FastAPI + ChromaDB preconfigured? I can generate one and include cloud deployment instructions (e.g., HuggingFace, Render, Railway).