🎨 Building a Streamlit Frontend for AI Apps Using ChromaDB, FAISS, and LangChain in 2025
📘 Introduction
In the rapidly evolving landscape of AI application development, Streamlit has become one of the most popular Python-based tools for quickly building modern web frontends. Whether you're creating a chatbot, document search engine, image analysis tool, or Retrieval-Augmented Generation (RAG) app, Streamlit provides a simple and powerful UI layer for your AI workflows.
This article guides you through creating a Streamlit frontend that connects to:
FAISS (for fast in-memory vector search)
ChromaDB (for persistent vector storage with metadata)
LangChain (for orchestration and LLM integration)
LLMs like DeepSeek, OpenAI, or HuggingFace
Multimodal input: Text, PDF, image, audio
You’ll walk away with a deployable AI interface that can handle chat, vector search, semantic querying, and tool use — all wrapped in a clean, browser-based UI.
✅ Table of Contents
Why Streamlit for AI Interfaces?
Architecture Overview
System Requirements and Setup
Installing Dependencies
Designing the Streamlit Layout
Integrating ChromaDB Backend
Connecting FAISS for Local Memory
Adding LangChain + LLM Agent
Multimodal Inputs (PDFs, Images, Audio)
Building a RAG-Enabled Chatbot
Real-Time Chat UI with Streamlit Chat
Deploying Streamlit on Cloud or Docker
Use Cases and Extensions
Final Thoughts + GitHub Template
1. 🖥️ Why Streamlit for AI Interfaces?
Streamlit is designed for data scientists and Python developers who want to turn code into shareable web apps without needing JavaScript, React, or CSS.
Advantages:
No frontend coding required
Works with Pandas, Torch, HuggingFace, LangChain
Auto-reloads on file save
Supports file uploads, camera input, plots, maps
Easy deployment to Streamlit Cloud, HuggingFace Spaces, or Docker
2. ⚙️ Architecture Overview
plaintext +----------------------+ | User Interface | ← Streamlit +----------+-----------+ ↓ +--------------------------------------+ | Backend (LangChain Agent) | | +----------------------------------+ | | | Vector DB (FAISS + ChromaDB) | | | | LLM (DeepSeek / OpenAI) | | | | Tools (Search, Code, RAG) | | +--------------------------------------+ ↓ +-------------------------+ | Final Output | +-------------------------+
3. 🧰 System Requirements and Setup
Python 3.10+
Min. 8 GB RAM (16 GB for local models)
GPU optional for local model inference
conda
orvenv
environment recommended
4. 📦 Installing Dependencies
Install packages:
bash pip install streamlit langchain faiss-cpu chromadb openai pip install sentence-transformers pip install pypdf Pillow
Optional:
bash pip install whisper transformers torchvision
5. 🧱 Designing the Streamlit Layout
Create a file: app.py
python import streamlit as st st.set_page_config(page_title="AI Assistant", layout="wide") st.title("🔍 AI Assistant with ChromaDB + FAISS")# Sidebar for file uploadst.sidebar.header("Upload Content") uploaded_files = st.sidebar.file_uploader("Choose files", accept_multiple_files=True) query = st.text_input("Ask something...")if st.button("Submit"): st.write("Processing...")
6. 🧠 Integrating ChromaDB Backend
python import chromadbfrom sentence_transformers import SentenceTransformer client = chromadb.Client() collection = client.create_collection(name="docs") embedder = SentenceTransformer("all-MiniLM-L6-v2")# Store uploaded PDFsfrom PyPDF2 import PdfReaderfor file in uploaded_files: reader = PdfReader(file) text = "\n".join([page.extract_text() for page in reader.pages]) embeddings = embedder.encode([text]) collection.add(documents=[text], embeddings=embeddings, ids=[file.name])
7. ⚡ Connecting FAISS for Local Memory
python import faissimport numpy as np# Initialize FAISSdimension = 384index = faiss.IndexFlatL2(dimension) memory_vectors = []def store_short_term(text): vec = embedder.encode([text]) memory_vectors.append(vec[0]) index.add(np.array(memory_vectors).astype('float32'))
8. 🧠 Adding LangChain + LLM Agent
python from langchain.llms import OpenAIfrom langchain.chains import RetrievalQAfrom langchain.vectorstores import Chromafrom langchain.embeddings import HuggingFaceEmbeddings llm = OpenAI(model_name="gpt-3.5-turbo") # Or use DeepSeek proxyembeddings = HuggingFaceEmbeddings() vectorstore = Chroma(client=client, collection_name="docs", embedding_function=embeddings) retriever = vectorstore.as_retriever() qa = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
Query the chatbot:
python if query: response = qa.run(query) st.markdown("### 🤖 Answer") st.write(response)
9. 🖼️ Multimodal Inputs (Image, Audio, PDF)
Add image understanding:
python image_file = st.sidebar.file_uploader("Upload image", type=["png", "jpg"])if image_file: from PIL import Image image = Image.open(image_file) st.image(image, caption="Uploaded Image", use_column_width=True) # TODO: Use DeepSeek-Vision here for captioning
Add Whisper for voice:
python audio = st.sidebar.file_uploader("Upload audio", type=["wav", "mp3"])if audio: import whisper model = whisper.load_model("base") transcription = model.transcribe(audio.name) st.write("Transcribed:", transcription["text"])
10. 🔁 Building a RAG-Enabled Chatbot
Integrate short-term + long-term memory:
python retriever_memory = retrieverdef hybrid_search(query): # Step 1: FAISS q_vec = embedder.encode([query]) _, indices = index.search(np.array(q_vec).astype('float32'), k=3) short_term_docs = [memory_vectors[i] for i in indices[0]] # Step 2: ChromaDB long_term_docs = retriever.get_relevant_documents(query) combined = "\n".join([d.page_content for d in long_term_docs]) return combined
11. 💬 Real-Time Chat UI with Streamlit Chat
python if "history" not in st.session_state: st.session_state.history = []for msg in st.session_state.history: st.chat_message("user").write(msg["user"]) st.chat_message("assistant").write(msg["bot"]) query = st.chat_input("Talk to the assistant...")if query: response = qa.run(query) st.chat_message("user").write(query) st.chat_message("assistant").write(response) st.session_state.history.append({"user": query, "bot": response})
12. 🚀 Deployment Options
Streamlit Cloud:
bash streamlit run app.py
Push to GitHub and connect to https://streamlit.io/cloud
HuggingFace Spaces:
bash pip install gradio
Adapt to Gradio or deploy Docker container.
Dockerfile Example:
Dockerfile FROM python:3.10 WORKDIR /app COPY . . RUN pip install -r requirements.txt CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.enableCORS=false"]
13. 🌐 Use Cases and Extensions
Use Case | Description |
---|---|
Internal Knowledge Bot | Ask questions from company docs |
Legal Search Engine | Retrieve similar case law with metadata |
Customer Support | RAG-enabled FAQ chatbot |
Education | Students upload PDFs, ask questions |
Medical | Upload patient notes, ask for treatment matches |
14. ✅ Final Thoughts + GitHub Template
Streamlit enables developers to build AI-first UIs in under an hour. When combined with FAISS, ChromaDB, and LangChain, you get a production-ready stack for document QA, chat, RAG pipelines, and multimodal interaction.
🔧 Suggested Folder Structure:
streamlit-ai-app/ ├── app.py ├── faiss_store.py ├── chroma_store.py ├── llm_agent.py ├── utils/ │ ├── pdf_utils.py │ ├── image_utils.py ├── requirements.txt ├── Dockerfile └── README.md
Would you like me to generate the GitHub repo, provide a Gradio version, or add multilingual support (e.g., for Chinese or Spanish users)?