🧠💡 Adding RAG + Vision with LangChain and DeepSeek: Building the Future of AI Agents (2025 Guide)

ic_writer ds66
ic_date 2024-12-26
blogs

📘 Introduction

Modern AI agents can do more than just generate text. With the rise of Retrieval-Augmented Generation (RAG) and multimodal models like DeepSeek-Vision, developers now have the tools to build intelligent assistants that:

  • Read and understand PDFs, websites, and private databases

  • Analyze and describe images

  • Combine image + text understanding for advanced workflows

  • Answer questions using both vision and retrieval

  • Perform reasoning across multimodal content

In this comprehensive 2025 guide, you’ll learn how to build an AI agent using LangChain that supports both RAG and image-based reasoning with DeepSeek and DeepSeek-Vision.

18902_oexh_1640.jpeg

✅ Table of Contents

  1. What is RAG + Vision and Why Does it Matter?

  2. Core Architecture: DeepSeek + LangChain + Vector DB + Vision

  3. Installing Requirements

  4. Preparing Your Data for RAG

  5. Setting Up a Vector Database (Chroma or FAISS)

  6. Adding RAG to LangChain Pipeline

  7. Integrating DeepSeek-Vision for Image Understanding

  8. Merging RAG + Vision Pipelines in One Agent

  9. Building a Multimodal Chatbot Interface

  10. Real-World Use Cases

  11. Performance, Scaling & Tips

  12. Conclusion + GitHub Starter Kit

1. 🧠 What is RAG + Vision and Why Does It Matter?

Retrieval-Augmented Generation (RAG) refers to AI systems that retrieve external knowledge (like documents or web pages) to generate more accurate, up-to-date, and context-aware responses.

Multimodal Vision AI allows the model to process images, graphs, screenshots, or diagrams in addition to text.

When combined, RAG + Vision creates powerful, hybrid agents that:

FeatureCapability
Text + Image InputAccept both questions + visual input
Document RetrievalFetch information from PDFs, sites, or databases
Image ProcessingInterpret diagrams, receipts, charts, screenshots
Smart GenerationAnswer using retrieved + visual information
Use ToolsIntegrate search, math, or APIs dynamically

These agents move us closer to general-purpose AI systems.

2. 🏗️ Architecture Overview

Here’s how your RAG + Vision agent is structured:

mathematica
   ┌──────────────┐        ┌──────────────┐
   │ User Input   │──────▶│ FastAPI/Chat  │
   └──────┬───────┘        └──────┬───────┘
          │                      │
          ▼                      ▼
   ┌──────────────┐      ┌────────────────────┐
   │ DeepSeek RAG │      │ DeepSeek-Vision AI │
   └────┬─────────┘      └──────┬─────────────┘
        ▼                          ▼
┌─────────────┐              ┌─────────────┐
│ VectorStore │              │ Image Tools │
│  (ChromaDB) │              │  (OCR, etc) │
└─────────────┘              └─────────────┘

Your backend can route queries dynamically:

  • If the input is pure text → use RAG

  • If it contains an image → use DeepSeek-Vision

  • If both → combine them

3. 🧰 Installing Requirements

bash
pip install langchain chromadb transformers sentence-transformers
pip install unstructured pypdf pdfminer.six pillow opencv-python
pip install fastapi uvicorn streamlit

If using Hugging Face:

bash
pip install huggingface_hub

If using DeepSeek-Vision through Ollama or GGUF:

bash
ollama run deepseek-vision

4. 📄 Preparing Your Data for RAG

Let’s assume you want to build a research assistant for AI whitepapers and image-heavy reports.

Load PDFs and Documents

python
from langchain.document_loaders import PyPDFLoader

loader = PyPDFLoader("deepseek_whitepaper.pdf")
documents = loader.load()

Split into Chunks

python
from langchain.text_splitter import RecursiveCharacterTextSplitter

splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
docs = splitter.split_documents(documents)

5. 🗃️ Set Up ChromaDB (Vector Store)

Use HuggingFace sentence transformers for embedding:

python
from langchain.embeddings import HuggingFaceEmbeddingsfrom langchain.vectorstores import Chroma

embedding = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
vectordb = Chroma.from_documents(docs, embedding)

To save and reuse:

python
vectordb.persist()

6. 🔍 Add RAG via LangChain Retrieval Chain

python
from langchain.chains import RetrievalQAfrom langchain.llms import HuggingFacePipelinefrom transformers import pipeline

llm_pipe = pipeline("text-generation", model="deepseek-ai/deepseek-chat", max_length=1024)
llm = HuggingFacePipeline(pipeline=llm_pipe)

qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=vectordb.as_retriever())

Example use:

python
response = qa_chain.run("Explain the mixture-of-experts architecture.")print(response)

7. 🖼️ Integrating DeepSeek-Vision for Image Understanding

Assuming you're using DeepSeek-Vision via API or Ollama:

python
from PIL import Imagedef analyze_image(image_path):
    image = Image.open(image_path)
    prompt = "What does this image show?"
    vision_prompt = {"image": image, "prompt": prompt}    
    # Replace with actual DeepSeek-Vision API call
    response = deepseek_vision.generate(vision_prompt)    return response

Or via Hugging Face:

python
from transformers import AutoProcessor, AutoModelForVision2Seq

processor = AutoProcessor.from_pretrained("deepseek-ai/deepseek-vision")
model = AutoModelForVision2Seq.from_pretrained("deepseek-ai/deepseek-vision")def analyze_image_vision(image_path):
    image = Image.open(image_path)
    inputs = processor(text="Describe this image", images=image, return_tensors="pt")
    out = model.generate(**inputs, max_new_tokens=256)    return processor.decode(out[0], skip_special_tokens=True)

8. 🔗 Merge RAG + Vision into One Agent

You can define a hybrid function:

python
def smart_agent(input_text, image_path=None):    if image_path:
        img_caption = analyze_image_vision(image_path)
        combined_query = input_text + "\n\nImage description: " + img_caption    else:
        combined_query = input_text

    response = qa_chain.run(combined_query)    return response

Now, if users upload an image + ask a question, you handle both modalities in one go.

9. 🧑‍💻 Building a Multimodal Chat UI

Use Streamlit:

python
import streamlit as st

st.title("RAG + Vision AI Chatbot")

query = st.text_input("Ask a question:")
image = st.file_uploader("Upload an image (optional)", type=["jpg", "png"])if st.button("Submit"):
    img_path = None
    if image:
        img_path = f"./tmp/{image.name}"        with open(img_path, "wb") as f:
            f.write(image.read())
    answer = smart_agent(query, image_path=img_path)
    st.write("AI Response:", answer)

Or you can build a FastAPI + React app for production.

10. 🌐 Real-World Use Cases

Use CaseDescription
Legal Document AIScan contracts + image-based diagrams
Medical AssistantRead radiology images + patient records
Financial Analyst BotExtract charts + reports from PDFs
Classroom TutorAnswer questions about textbook text + graphs
E-commerce BotAnalyze product photos + spec sheets
Architecture AssistantReview floor plans + design documents
Multilingual Historical ResearcherCombine OCR, RAG, and image translation

11. 🚀 Performance, Scaling & Best Practices

RecommendationReason
Use GGUF or quantized modelsReduce memory, deploy locally
Use chunked retrievalImproves search precision
Add prompt compressionHelps with long contexts
Async image + RAG callsBoosts performance
GPU accelerationSpeed up image generation
Split logic by modalityClear pipeline separation
Use .persist() for DBAvoid reprocessing on restart
Cache responsesUse Redis or local JSON

12. ✅ Conclusion + GitHub Starter Template

With just a few lines of code, you've now built a powerful:

  • 🔍 Text Retriever (RAG) using DeepSeek

  • 🖼️ Image analyzer with DeepSeek-Vision

  • 🤖 Multimodal AI assistant that understands text + images

  • 🧠 Reasoning agent capable of advanced outputs

  • 🌐 Chat interface that accepts uploads and questions

📦 GitHub Template Includes:

  • LangChain + DeepSeek + DeepSeek-Vision agent

  • ChromaDB + FAISS vector support

  • Streamlit frontend

  • FastAPI backend (optional)

  • Image upload support

  • Tool usage integration

  • Dockerfile for deployment

  • .env examples + secret protection