✅ Model Download Instructions for DeepSeek and Other Open Source LLMs (2025 Guide)

ic_writer ds66
ic_date 2024-12-26
blogs

🔍 Introduction

Large Language Models (LLMs) like DeepSeek, Mistral, LLaMA, and others have taken center stage in the AI revolution. But many developers and organizations are moving away from closed-source APIs (like OpenAI) in favor of self-hosted, open-source, or offline models for reasons of privacy, control, and cost.

64830_6owa_1830.png

This in-depth guide will walk you through:

  • Downloading DeepSeek models using Ollama, Hugging Face, or direct methods

  • Supported formats and compatible backends (llama.cpp, vLLM, LMDeploy)

  • Efficient storage tips for large models

  • Verifying model integrity and compatibility

  • Fine-tuning, quantization, and running locally

  • Common issues and troubleshooting

By the end, you'll be ready to run massive models like DeepSeek R1-Chat, even on consumer-grade hardware.

✅ Table of Contents

  1. Why Download Models Locally?

  2. DeepSeek Model Overview

  3. Option 1: Download via Ollama

  4. Option 2: Download via Hugging Face CLI

  5. Option 3: Direct Download (Torrent/Git LFS)

  6. Quantization Formats (GGUF, FP16, Q4_K_M, etc.)

  7. Compatible Runtimes: llama.cpp, LMDeploy, vLLM

  8. How Much Storage and RAM Do You Need?

  9. GPU Acceleration (NVIDIA, AMD, M-Series Apple Silicon)

  10. Tips for Multiple Models

  11. Verifying and Updating Models

  12. Conclusion + Recommended Resources

1. 💡 Why Download LLMs Locally?

ReasonBenefit
PrivacyAll prompts and replies stay on your device
Cost ControlNo usage fees, API key issues, or limits
CustomizationUse your own embeddings, fine-tuning, memory
Offline AccessNo internet required to chat or generate
SpeedNo network latency, full GPU/CPU control

2. 🧠 DeepSeek Model Overview

VariantParametersUse Case
DeepSeek-Coder6.7B, 33BCode generation and completion
DeepSeek-MoE236B (37B active)General LLM reasoning, fast inference
DeepSeek-Chat67B+Conversational chatbot
DeepSeek-R1671B (Mixture of Experts)Research-scale AGI model (partial access)

Most DeepSeek models are open-access and are downloadable for research and commercial use under specific licenses.

3. 🐳 Option 1: Download with Ollama (Recommended)

Step 1: Install Ollama

bash
curl -fsSL https://ollama.com/install.sh | sh

Step 2: Pull DeepSeek Model

bash
ollama pull deepseek-chat

This automatically downloads a quantized GGUF model optimized for llama.cpp.

You can also list all available models:

bash
ollama list

Run the model:

bash
ollama run deepseek-chat

Ollama stores models in:
Linux/macOS: ~/.ollama
Windows: C:\Users\<name>\.ollama

4. 💾 Option 2: Download via Hugging Face CLI

Step 1: Install huggingface_hub

bash
pip install huggingface_hub

Step 2: Login (optional for some models)

bash
huggingface-cli login

Step 3: Download DeepSeek Models

Example (DeepSeek-Coder 6.7B):

bash
huggingface-cli repo download deepseek-ai/deepseek-coder-6.7b-base

Or clone with Git LFS:

bash
git lfs install
git clone https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base

5. 🌐 Option 3: Direct Download (Torrent / Git)

Some models are hosted as .gguf, .bin, or .safetensors on:

  • Torrent links

  • Academic FTPs

  • Chinese AI sharing platforms (e.g. ModelScope)

  • Community repos like TheBloke

Example:

bash
wget https://huggingface.co/TheBloke/deepseek-chat-7B-GGUF/resolve/main/deepseek-chat.Q4_K_M.gguf

6. 📦 Quantization Formats Explained

FormatUse CaseRAM NeededSpeed
FP16Full-precision, for fine-tuningHighSlower
INT4 / Q4_K_MOptimized for llama.cppLowFast
GGUFNew standard for llama.cpp modelsMediumVery Fast
SafetensorsUsed in PyTorch/HF ecosystemHighFlexible

Use tools like llama.cpp, lmdeploy, or ctransformers to convert between formats.

7. 🧩 Compatible Inference Runtimes

✅ llama.cpp (CPU / Metal / CUDA)

  • Best for quantized .gguf

  • CLI, server, API endpoints

  • Supports 4-bit, streaming, long context

bash
./main -m deepseek-chat.Q4_K_M.gguf

✅ LMDeploy (NVIDIA only)

bash
git clone https://github.com/InternLM/lmdeploy

Supports tensor parallel, multi-GPU, Triton backend.

✅ vLLM

  • Fastest for multi-user scenarios

  • Python-first, supports Hugging Face models

  • Compatible with FP16, quantized

8. 🗃️ How Much Storage and RAM?

ModelDisk SizeRAM (min)
DeepSeek 7B Q4_K_M~4.1 GB6–8 GB
DeepSeek 33B GGUF~20–30 GB24–32 GB
DeepSeek R1 236B~100+ GB128 GB+ (or tensor parallel)
Full R1 (671B)Research onlyGPU cluster required

You can run Q4_K_M on MacBook Air M1, while full FP16 models require RTX 3090 or A100 GPUs.

9. ⚡ GPU Acceleration

PlatformToolNotes
NVIDIALMDeploy, vLLMFastest, FP16 or INT8
AMDROCm + llama.cppExperimental support
Apple M1/M2llama.cpp + MetalVery efficient
CPUllama.cppGood for small quantized models

For DeepSeek on GPU:

bash
# Using vLLMpip install vllm
python3 -m vllm.entrypoints.openai.api_server \
  --model deepseek-ai/deepseek-coder-33b-base

10. 📚 Tips for Managing Multiple Models

  • Use symbolic links to keep one copy in shared directory

  • Add model_config.yaml to each model’s folder

  • Use Docker volumes to mount external model storage

  • Use scripts to switch between models

bash
alias chat-coder="ollama run deepseek-coder"alias chat-chat="ollama run "

11. ✅ Verifying and Updating Models

Check model checksum

bash
sha256sum deepseek-chat.Q4_K_M.gguf

Compare with publisher's value.

Update models in Ollama

bash
ollama update
ollama pull deepseek-chat

Use Docker tags to avoid breaking changes:

yaml
image: ollama/ollama:0.1.23

12. 🧳 Conclusion + Next Steps

You've now learned how to download, manage, and run DeepSeek and other open models locally. Whether you're building a chatbot, a dev assistant, or an AI-powered app, you now control your own stack—no third-party API required.

✅ What You Can Do Next:

  • Use chatbot_api.py to turn your model into a chat API

  • Deploy your bot via Docker or NGINX

  • Add embeddings + vector search with llama-index or LangChain

  • Fine-tune DeepSeek on your own data using LoRA or QLoRA

📥 Want a Starter Pack?

Includes:

  • Sample ollama pull scripts

  • Hugging Face CLI download commands

  • Sample Python chatbot integration

  • Docker setup for DeepSeek

  • VS Code + Flask + chatbot API combo

Let me know if you'd like the pack delivered as a ZIP archive, GitHub repo, or Google Drive folder.

Would you also like a follow-up article on fine-tuning DeepSeek with LoRA, or a LangChain RAG pipeline using DeepSeek?