🔍 Using LangChain with DeepSeek for Tool Integration and RAG Search (2025 Guide)

ic_writer ds66
ic_date 2024-07-08
blogs

🧠 Introduction

Large Language Models (LLMs) have become increasingly powerful, but their real potential is unlocked when they can use tools and retrieve knowledge from external sources. This is where LangChain comes in—a modular framework designed to connect LLMs like DeepSeek with tools such as APIs, databases, and knowledge bases.

66856_fcvo_8002.jpeg

In this guide, you’ll learn how to:

  • Use LangChain with DeepSeek models (chat, vision, and instruction)

  • Implement tool use (calculator, web search, code execution, etc.)

  • Integrate RAG (Retrieval-Augmented Generation) pipelines

  • Connect DeepSeek to vector databases (FAISS, Chroma, etc.)

  • Build intelligent, context-aware agents for your app or chatbot

  • Deploy the setup using FastAPI or Streamlit

Whether you're building a customer support bot, research assistant, or AI tutor, this tutorial will show you how to turn DeepSeek into a powerful, tool-using agent with real-time knowledge.

✅ Table of Contents

  1. What Is LangChain and Why Use It with DeepSeek?

  2. Requirements and Setup

  3. Installing and Loading DeepSeek with LangChain

  4. Using Tools with LangChain Agents

  5. Building a RAG Pipeline

  6. Connecting to Vector Stores (FAISS, Chroma, Pinecone)

  7. Integrating with PDF, Notion, Websites

  8. Building a FastAPI or Streamlit Frontend

  9. Performance, Memory, and Cost Considerations

  10. Real-World Use Cases

  11. Conclusion + GitHub Template

1. 🤖 What Is LangChain and Why Use It?

LangChain is a Python framework that connects LLMs with:

  • Tools like calculators, search engines, code interpreters

  • Agents that decide what to do next (reasoning + action)

  • Memory to remember past interactions

  • Vector databases for document retrieval (RAG)

  • Multimodal interfaces (images, audio, video)

Using LangChain with DeepSeek gives your AI system real-world power:

FeatureBenefit
RAGQuery documents, databases, and knowledge graphs
ToolsUse calculator, API calls, or even file editing
MemoryRemember previous questions
AgentsMake autonomous decisions
ComposabilityCombine tools, chains, and flows


2. 🛠 Requirements

You’ll need:

  • Python 3.10+

  • DeepSeek model (via transformers, Ollama, or Hugging Face)

  • LangChain (pip install langchain)

  • Vector store (Chroma, FAISS, or Pinecone)

  • Optional: sentence-transformers, pypdf, unstructured, tiktoken, streamlit, uvicorn

3. 🚀 Installing and Loading DeepSeek with LangChain

Install LangChain and Dependencies

bash
pip install langchain chromadb sentence-transformers
pip install unstructured pdfminer.six

Load DeepSeek with HuggingFace Transformers

python
from transformers import pipelinefrom langchain.llms import HuggingFacePipeline

pipe = pipeline("text-generation", model="/deepseek-chat", max_length=1024)
llm = HuggingFacePipeline(pipeline=pipe)

Or use Ollama:

python
from langchain_community.llms import Ollama
llm = Ollama(model="deepseek")

Now, llm() can be used inside LangChain chains, agents, and tools.

4. 🧰 Using Tools with LangChain Agents

LangChain supports tool use via ZeroShotAgent or Function Calling Agent.

Step 1: Define Tools

python
from langchain.agents import Tooldef calculator_tool(query):    return str(eval(query))

tools = [
    Tool(
        name="Calculator",
        func=calculator_tool,
        description="Useful for math operations"
    )
]

Step 2: Create an Agent

python
from langchain.agents import initialize_agentfrom langchain.agents.agent_types import AgentType

agent = initialize_agent(
    tools,
    llm,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True)

Step 3: Use the Agent

python
response = agent.run("What is (42 * 6) + 100?")print(response)

DeepSeek will decide to call the calculator tool!

5. 📖 Building a RAG (Retrieval-Augmented Generation) Pipeline

Step 1: Load Your Documents

python
from langchain.document_loaders import PyPDFLoader

loader = PyPDFLoader("deepseek_whitepaper.pdf")
documents = loader.load()

Step 2: Split Text into Chunks

python
from langchain.text_splitter import RecursiveCharacterTextSplitter

splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
docs = splitter.split_documents(documents)

Step 3: Embed and Store in Vector DB

python
from langchain.vectorstores import Chromafrom langchain.embeddings import HuggingFaceEmbeddings

embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vectordb = Chroma.from_documents(docs, embedding)

Step 4: Perform RAG Search

python
from langchain.chains import RetrievalQA

qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=vectordb.as_retriever())
response = qa_chain.run("What does DeepSeek's MoE architecture mean?")

6. 🗃️ Connect to Other Vector Stores

LangChain supports:

StoreNotes
ChromaLocal, fast, open-source
FAISSLightweight and widely used
PineconeScalable cloud vector DB
WeaviateSemantic + hybrid search
QdrantRust-based, GPU-accelerated

Change only one line:

python
from langchain.vectorstores import FAISS
vectordb = FAISS.from_documents(docs, embedding)

7. 📚 Add Source Types: PDF, Notion, HTML, YouTube

LangChain lets you load:

python
from langchain.document_loaders import WebBaseLoader, NotionDirectoryLoader

docs_web = WebBaseLoader("https://deepseek.com").load()
docs_notion = NotionDirectoryLoader("notion_export_folder").load()

Want YouTube transcripts?

python
from langchain.document_loaders import YoutubeLoader
docs = YoutubeLoader.from_youtube_url("https://youtu.be/abc123", add_video_info=True).load()

8. 🌐 Building a Web Interface with Streamlit

Streamlit UI for Chat + RAG

python
import streamlit as st

st.title("DeepSeek RAG Chatbot")
query = st.text_input("Ask a question:")if st.button("Ask"):
    answer = qa_chain.run(query)
    st.write("Answer:", answer)

Or use FastAPI + React for a production-ready UI.

9. ⚙️ Performance Tips

TipWhy
Quantized modelsUse DeepSeek in int4 or gguf to save RAM
Chunking wiselyShorter chunks improve retrieval speed
CachingCache embeddings and search queries
GPU useUse accelerate or Ollama to run DeepSeek on CUDA
Context lengthDeepSeek supports 8k+ tokens—great for long documents

10. 🔍 Real-World Use Cases

Use CaseDetails
Customer Support BotSearch help docs and suggest answers
Legal AI AssistantQuery thousands of legal PDFs
Academic Q&AScan textbooks and explain in plain English
Developer CopilotAnswer questions using API docs
Multimodal TutorCombine RAG with DeepSeek-Vision
Finance ResearcherExtract trends from investor reports
AI Writing AssistantSuggest content from source material

You can integrate all of these with Telegram, Slack, Discord, or custom websites.

11. ✅ Conclusion + Starter GitHub Template

With LangChain + DeepSeek, you’ve now built an intelligent system that can:

  • Search documents, websites, PDFs

  • Answer questions with context

  • Use tools like calculators, APIs, and search engines

  • Create agents that autonomously decide what to do

  • Scale across web apps, bots, and assistants

📦 Starter Kit Includes:

  • LangChain + DeepSeek integration script

  • PDF loader + splitter + embedder

  • ChromaDB setup

  • FastAPI + Streamlit UI

  • Agent with calculator + search tools

  • Dockerfile and .env sample

  • Hugging Face + Ollama compatibility

Would you like it as a GitHub repo, Colab notebook, or Docker container?