đ ď¸ A Step-by-Step Guide to Building Your First Automated Project with DeepSeekâR1
1. đ Why Build with DeepSeekâR1?
DeepSeekâR1 is a powerful, reasoning-optimized LLM with a 128K-token window that excels at complex, multi-step tasks. With the free course, beginners can learn to:
Decompose problems into logical workflows
Automate interactions across tools and APIs
Build reliable, reusable systems with minimal code
In this guide, youâll learn to create a daily research-summary email bot using DeepSeekâR1, open-source libraries, and scheduled automationâa perfect âfirst projectâ that showcases chaining, tool use, RAG, and deployment.
2. đ§° Defining the Project: Daily Research-Summary Bot
What it does:
Fetches news articles from RSS or APIs
Summarizes key insights using DeepSeekâR1
Formats a clean email report
Sends the summary via email daily (e.g., at 7 a.m.)
Why itâs ideal:
Covers data ingestion, LLM reasoning, templating, and automation
Teaches chaining, scheduling, deployment
Solves a real-world pain point: staying informed
3. đ§ Prerequisites & Tools
Hereâs what you'll need:
Python 3.8+
Free DeepSeekâR1 API access (via OpenRouter or Azure)
Libraries:
bash
pip install requests feedparser deepseek-course-tools
(Assume âdeepseek-course-toolsâ bundles LangChain, APScheduler, etc.)
Email credentials (SMTP or transactional API like SendGrid)
Optional: Docker and git
4. âď¸ Step 1: Obtain DeepSeekâR1 API Key
Sign up at OpenRouter.ai
Choose
deepseek/deepseek-r1:free
Generate and copy your API key
Add to
.env
file:ini
OPENROUTER_KEY=your_key_here
5. đ§ Step 2: Set Up Chat Client
Create llm_client.py
:
python import os, requests API_URL = "https://openrouter.ai/api/v1/chat/completions"HEADERS = {  "Authorization": f"Bearer {os.getenv('OPENROUTER_KEY')}",  "Content-Type": "application/json"}def ask_deepseek(prompt: str) -> str:     payload = {      "model": "deepseek/deepseek-r1:free",      "messages":[{"role":"user","content":prompt}]     }     res = requests.post(API_URL, json=payload, headers=HEADERS)     res.raise_for_status()    return res.json()["choices"][0]["message"]["content"]
This gives you a reusable interface to ask the model questions.
6. đ° Step 3: Fetch News Articles
Create fetch_news.py
:
python import feedparserdef get_articles(feed_urls, limit=5):     articles = []    for url in feed_urls:         feed = feedparser.parse(url)        for entry in feed.entries[:limit]:             articles.append({"title": entry.title, "link": entry.link, "summary": entry.summary})                return articles
Use reputable RSS sources, e.g.:
python feeds = [  "https://rss.nytimes.com/services/xml/rss/nyt/Technology.xml",  "https://feeds.feedburner.com/techcrunch/startups"]
7. đ§Š Step 4: Summarize with DeepSeek-R1
Create summarizer.py
:
python from llm_client import ask_deepseekdef summarize_article(title, text):     prompt = (      f"Summarize the following article in 3 bullet points:\n\n"       f"Title: {title}\nContent: {text}"     )    return ask_deepseek(prompt)
Test it in Python REPL by passing an article and verifying the output.
8. đ Step 5: Format the Email Report
Create format_report.py
:
python def compose_email(articles_summary):     lines = ["Subject: Daily Research Summary\n", "Good morning,\n\nHere are today's summaries:\n"]        for idx, item in enumerate(articles_summary, 1):         lines.append(f"{idx}. {item['title']}\n{item['summary']}\nLink: {item['link']}\n\n")     lines.append("Have a great day!")    return "".join(lines)
This readable structure enhances user experience.
9. âď¸ Step 6: Send Email Automation
Use SMTP in send_email.py
:
python import os, smtplibfrom email.message import EmailMessagedef send_email(recipient, email_body):     msg = EmailMessage()     msg.set_content(email_body)     msg["Subject"] = "Daily Research Summary"     msg["From"] = os.getenv("EMAIL_USER")     msg["To"] = recipient    with smtplib.SMTP_SSL("smtp.example.com", 465) as smtp:         smtp.login(os.getenv("EMAIL_USER"), os.getenv("EMAIL_PASS"))         smtp.send_message(msg)
Set environment variables for sender credentials.
10. đ§ Step 7: Orchestrate the Workflow
Create main.py
:
python from fetch_news import get_articlesfrom summarizer import summarize_articlefrom format_report import compose_emailfrom send_email import send_emaildef run_daily():     feeds = [...]  # your list     articles = get_articles(feeds)     summaries = []    for art in articles:         summaries.append({          "title": art["title"],          "link": art["link"],                  "summary": summarize_article(art["title"], art["summary"])         })     email_text = compose_email(summaries)     send_email("you@example.com", email_text)if __name__ == "__main__":     run_daily()
Run the script to test the complete end-to-end process.
11. đ Step 8: Schedule the Automation
Use scheduler via schedule.py
:
python from apscheduler.schedulers.blocking import BlockingSchedulerfrom main import run_daily scheduler = BlockingScheduler() scheduler.add_job(run_daily, "cron", hour=7, minute=0)  # Runs daily at 07:00scheduler.start()
Now your summary bot runs autonomously each morning.
12. đŚ Step 9: Containerize (Optional)
Create Dockerfile
:
sql FROM python:3.11-slim WORKDIR /appCOPY requirements.txt . RUN pip install -r requirements.txtCOPY . . CMD ["python", "schedule.py"]
Build and run:
bash docker build -t deepseek-summary-bot . docker run -d --env-file .env deepseek-summary-bot
This ensures portability across environments.
13. đ Step 10: Monitoring & Logging
Add basic logging in main.py
:
python import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__)def run_daily():     logger.info("Starting daily summary job")     ...  # your workflow     logger.info("Email sent!")
Use Docker logs or integrate Sentry, Prometheus, or other monitoring tools for deeper insights.
14. đĄď¸ Step 11: Best Practices & Optimization
Error handling: wrap fetch, summary, email in try/except
Retry logic: for HTTP/API failures
Prompt efficiency: limit tokens in summaries
Cache summaries: avoid duplicate summaries via hashes
Security: keep credentials in
.env
, avoid exposing in code
15. đ Future Enhancements
Once youâve built the MVP, consider:
RAG: fetch full-text articles, vectorize with Chroma or FAISS, query dynamically
Slack/Discord integration: send seamlessly to channels
Templates or PDF output via Markdown-to-PDF libraries
Web interface: Streamlit dashboard with downloadability
Multimodal: incorporate DeepSeekâVision snapshots
Expand to multiple recipients with templates
16. đŻ Skill Recap
Throughout this project, you learned to:
Setup DeepSeekâR1 API and interface
Fetch and parse external data
Summarize content with prompt engineering
Format and send human-readable emails
Schedule daily execution
Containerize and monitor your solution
Integrate improvements with RAG or UI
This template can power many other automated workflows.
17. đ§Š Next Steps & Support
Need help taking it further?
Write a RAG summary tool
Build a Slack-based research bot
Add fine-tuned personas
Bundle as a multi-service API
Let me knowâI'm happy to provide starter repos, code enhancements, and deployment guides tailored to your needs.
18. â Conclusion
Building an automated research-summary bot with DeepSeekâR1 is a beginner-friendly yet powerful way to explore AI-driven automation. With intuitive components and real-world utility, it's an ideal first project that reinforces course principles.
Your next step? Fork this project, customize it, and iterate! Just ask for help or advanced versions anytime đ